

Pitfalls in the MCD diagnostic work-up

Nataliya Di Donato, MD

nataliya.didonato@uniklinikum-dresden.de

MCD are recognizable, if you are familiar with them (requires training)

General diagnosic approach implies genome-wide testing

Diagnostic work-up requires a feedback loop between laboratory results and clinic

Patient 1. Neonatal seizures, lissencephaly; diagnostic targeted test

- Normal chromosomal microarray
- Whole exome sequencing
 - VOUS x2 but BOTH were inherited from her father
 - RELN: c.1386C>T (p.C462C) potential splice defect
 - RELN: c.5200C>G (p.L1734V)

RELN deletion/duplication analysis: maternal deletion exon 4

Patient 2. Microlissencephaly, additional diagnostic test

Trio exome sequencing NM_152641.2(ARID2): c.4523G>A: p.Gly1508Asp de novo (PS2, PM2, PP3 – likely pathogenic)

FA: parents 1st degree cousins; global developmental delay, seizures, OFC – 5 SD

ARID2: Coffin-Siris syndrome or Coffin-Siris like phenotype

- SWI/SNP phenotype spectrum includes microcephaly, but no patients with ARID2 mutations presented with microcephaly
- SWI/SNP disorders were never associated with lissencephaly

Patient 2. Boy with microlissencephaly, additional diagnostic test

- Trio exome sequencing NM_152641.2(ARID2): c.4523G>A:p.Gly1508Asp de novo (PS2, PM2, PP3 – likely pathogenic)
- CNV analysis reveals deletion of PAFAH1B1 (LIS1)

Family: parents 1st degree cousins; global developmental delay, seizures, OFC – 5 SD

Patient 3. Pontocerebellar hypoplasia with COL4A1

- FA unremarkable
- Born full term with Length 46 cm (-2 SD) Weight 2360 g (-2.3 SD) OFC 31.5 cm (-2.5 SD)
- Global developmental delay
- Severe microcephaly OFC at 20m - 6 SD
- Brain MRI: pontocerebellar hypoplasia
- Normal CMA
- Various panels: normal
- Open trio exome sequencing: NM_001845.5(COL4A1): c.3950G>A p.Gly1317Asp de novo (likely pathog.)

PCH is not a COL4A1-related disorder

Small-vessel brain disease of varying severity

Patient 3 does not have PCH, but COL4A1 related disorder

Small-vessel brain disease

Patient 4. IUGR, hydrocephalus, profound ID and seizures; de novo variant in TUBB3, low quality scans

- IUGR: BL 47 cm (-2.37 SD), OFC 32 cm (-2.46 SD)
- Hydrocephalus operated at 8m, complicated with post-operative hemorrhage and venriculitis and multiple revisions
- 4y no developmental milestones, complex focal seizures
- OCF 40.5 cm (-7.46 SD),
 L 93.5 cm (-2.5 SD), ptosis
- NM_001197181.1(TUBB3): c.317C>T, p.(Thr106Met) likely pathogenic

4 years

Hydrocephalus is not a core feature of the tubulinopathies

Key features of tubulinopathies:

- Dysmorphism / unusual orientation of basal ganglia
- Partial / complete agenesis of the corpus callosum
- Cerebellar dysplasia / hypoplasia
- Thick tectum

5 months

Early MRI images are typical for tubulinopathy spectrum

Patient 5. IUGR and abnormal gyration due to trisomy 18

- FA: parents are 1st degree cousins from Afganistan, two siblings died shortly after birth from unknown cause
- Gestational diabetes
- 39+5 GW: W 2 kg (-3.3 SD),
 L 44 cm (- 3.4 SD), OFC 33 cm (- 1.4 SD), Apgar 1/6/8
- Heart defect (VSD, PDA), AV block
- Cholestasis
- Head US abnormal gyration

Chromosomal microarray: trisomy 18

Patient 6. Hydrocephalus, respiratory distress, feeding difficulties, neonate seizures; GRIN2B

- Tonic seizures at 3 weeks, developed into generalized tonic-clonic seizures refractory to the therapy
- G-tube feeding
- No milestones reached by 3y
- Normal length and OFC
- Brain MRI with very thin corpus callosum, thick tectum, diffuse bilateral PMG, enlarged lateral ventricles, dysplastic basal ganglia
- NM_000834.3(GRIN2B):c.1916C>T p.(Ala639Val), likely pathogenic, was not considered to be causative for MCD, suggested mutation in tubulin or MAP encoding genes

Patient 6. Expansion of GRIN2B-associated phenotype

Other NMDA receptor encephalopathies are also associated with MCD: GRIN1

- Extensive bilateral PMG, severe ID, microcephaly, therapy-resistant epilepsy
- GRIN1 mutations reported in patients with non-synd. ID and epileptic encephalopathy and movement disorders
- The reason why some GRIN1 (and GRIN2B) patients get MCD is uncertain

Patient 7. Frontal pachygyria (< 10 mm), seizures and macrocephaly; similar affected sibling

- NM_003805(CRADD):c.382G>C, p.Gly128Arg homozygous in both affected
- Mutation previously reported in a large Mennonite family with mild non-synd. ID (no MRI)
- Re-evaluation of the previously published family: identical MCD pattern

CRADD mutations detected in 4/13 families with frontal pachygyria (cortical thickness < 10mm)

Pathogenic variants can be inherited from unaffected / undiagnosed parents

NM_003805.4(CRADD): c.52_59delGCAGAGGT / p.Ala18Ilefs*47

37. GW Frontal AGY

"Phenotypic spectrum can be different from the literature

Key features of tubulinopathies:

- Variable MCD
- Dysmorphism / unusual orientation of basal ganglia
- Partial / complete agenesis of the corpus callosum
- Cerebellar dysplasia / hypoplasia
- Thick tectum

TUBG1: p. Ser259Leu

TUBG1 phenotype is similar to LIS1, DYNC1H1, or KIF5

Key features of TUBG1associated disease:

- 8 patients reported
- Posterior predominant pachygyria
- No malformations of corpus callosum, brain stem, cerebellum or basal ganglia

TUBG1: p. Ser259Leu

Clinical interpretation of variants in novel disease genes requires a patient cohort

Available platforms (Matchmaker Exchange):

 GeneMatcher, DECIPHER, PhenomeCentral, MyGene2, Matchbox, AGHA Patient Archive, IRUD...

"Data don't make any sense, we will have to resort to statistics."

GeneMatcher:

> 150 citations in Pubmed

Successful GeneMatching: MAPK8IP3

- 13 individuals with de novo heterozygous variants (10 missense and 3 truncating)
- NDD phenotype with variable brain malformations: cerebral and cerebellar atrophy, hypoplastic corpus callosum and perisylvian PMG
- PMG in two patients with recurrent p.Leu438Pro
- None of other mutations presented with MCD

Majority of gene discoveries in MCD cohorts are still done through direct phenotyping

- 3 unrelated patients with lissencephaly and a distinct brain stem malfromation with deficient midline crossing
- 5 additional individuals with the same pattern
- MCD consistent with diffuse pachygyria with posterior gradient and cortex thickness < 10mm
- "Bowtie" brainstem on midsagittal images looking like inverted totem bird wings on axial images
- 7 missense mutations and 1 deletion in MACF1

MACF1 was also proposed to as an MCD candidate gene by a forward genetic screen

ARTICLE

DOI: 10.1038/s41467-018-04880-8

OPEN

Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice

I-Ling Lu¹, Chien Chen^{2,3}, Chien-Yi Tung^{4,5}, Hsin-Hung Chen^{3,6}, Jia-Ping Pan⁴, Chia-Hsiang Chang^{1,7}, Jia-Shing Cheng¹, Yi-An Chen¹, Chun-Hung Wang¹, Chia-Wei Huang¹, Yi-Ning Kang¹, Hsin-Yun Chang¹, Lei-Li Li¹, Kai-Ping Chang^{3,8}, Yang-Hsin Shih^{3,6}, Chi-Hung Lin^{4,5,9}, Shang-Yeong Kwan^{2,3} & Jin-Wu Tsai^{1,10,11}

Population allele frequency is a main criterium for variant prioritization, but also a pitfall

Total ~ 25 000

Protein changing ~ 6000

Rare ~ 150

ACMG stand alone evidence of benign impact is a allele frequency of > 5% in gnomAD, 1000 Genoms project etc.

(Variants homozygous in gnomAD are often considered to benign)

PLEKHG6 disease causing variant would not pass most clinical filters as listed x1 homozygous in gnomAD

- Child with mild-moderate ID and periventricular nodular heterotopia (occipital horns and trigone)
- NM_001144857.1
 (PLEKHG6): c.28delG
 p.(Glu10Argfs*31) hom.
- Selected as a variant located within validated human transcripts that have no ortholog in mice

Every diagnostic step has its pitfalls

- Disorder is not recognized clinically (insufficient data, insufficient expertise)
- Complex phenotype due to two (or more) monogenic disorders in one patient
- Genetic test does not cover the whole mutation spectrum
- Phenotypic spectrum can be broader when currently known
- Variants can be inherited from seemly unaffected parents
- Population databases can include affected individuals, variants might not be fully penetrant

MCD are recognizable

THANK YOU FOR YOUR ATTENTION

